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SIGNIFICANCE AND EXPLANATION

Semilinear heat equations - i.e. heat equations perturbed by a

nonlinearity acting only on the lowest order term - arise in many contexts.

It is well known that when studying the asymptotic behaviour of the solutions

as the time t tends to infinity, a crucial role is played by the steady-

state solutions. In this paper we present a global geometrical description of

the set of steady-state solutions and this description enables us to give

global results on the asymptotic behaviour of the solutions of the initial

value problem.
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STRUCTURE OF THE SET OF STEADY-STATE SOLUTIONS

AND ASYMPTOTIC BEHAVIOUR OF SEMILINEAR

HEAT EQUATIONS

P. L. Lions

Introduction: Let 0 be a bounded, smooth, connected domain in RN. We consider both the

initial value problem:auriV - Au = f(u) in S x (0,+-)
(IVP)

u(x,t) = 0 on 30 x (0,+-), u(x,O) u (x) in
0

and the stationary problem:

(SP) -Au a g(u) in 0 , u = 0 on 30

where u0 is some given initial condition and f is a given nonlinearity of class C1 .

To explain our results, let us take, to simplify, the case when f is bounded on R.

We denote by S the set of solutions of (SP) (in C2 ()) and by S+ (resp. S_, resp. SO )

the set of functions u in S such that:

A (-A - f'(u)) > 0 (resp. < 0, resp. - 0) ;

where AI(-A + c(x)) denotes the first eigenvalue of -A + c(x) acting over H (0).
1 0

We prqve here that we have:

i) S+ oonsists of a at most countable number of isolated points,

ii) Every closed connected subset of S is a totally ordered CI curve,

iii) If C is a connected subset of S_ then F, the closure of C, is contained in

S_. And this implies that for every u0 , the w-limit set w(u ) (i.e., the set of

functions u such that there exists t + " with u(*,t ) + u(*)) is contained either
n n n n

in S+, either in So, or in S_.

we next define:
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We next define:

I+ . Cu0  Wlu o) C S+}

I {u0  , (u0) C S-)

0 0 -0  = {u0  , (u 01 ) so S

We then prove that we have:

i) I+ U I0 contains an open dense set;

(ii) on I+ l o, W(uo) is a singleton;

(iii) If u0 1_, then there exists C > 0, v G S U So, V_ 0 S U S such that, for

all u Q B(Uoo) = {Eu - u I < t} (for some norm 1o1 precised below), we have:
-00 0 'U0, Uo FU0- "wUo) -{V+

UIo' Uo I .

In addition we can identify v+ and v_: for example, v+ is the minimum element of S

above any function of a(u0). In particular in view of (i), (ii), generically in Uo,
0

the solution u(x,t) of (IVP) converges as time goes to +- to a stable solution (in a

linearized sense) of (SP).

This study is, in some sense, the sequel of (131, where we studied the case when f

is convex; and in the study of the (IVP) we will use strongly some results of (131.

The fact that, on o, w(u 0 ) reduces to only one point is related to a recent work of

J. K. Hale and P. Massatt 1101 (and actually can be deduced from 1101 and the description

of s o  given above). The only global results describing the instability of steady-state

solutions in S_ are given in H. Fujita (91, P. L. Lions (131, and D. Henry (111, (12) -

let us remark that in (91 only a very special case is studied, while in D. Henry [11],

(121, it is assumed that not only S0  is empty, but that, for all u in S_, the

linearized operator -A - f'(u) is one to one. Finally let us mention the related works

of H. Matano 1141, (151; N. Chafes [41; N. Chafes and E. Infants [51, W. H. Fleming (8];

M. G. Crandall, P. Fife and L. A. Peletier (611 M. Bertsch, P. L. Lions and L. A. Peletier

(31.
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In section I below, we study the sets S+, S_, S0  and we prove claims i), ii) and

iii). In section II, we give the proofs of the assertions concerning the asymptotic

behaviour of the solutions of (IVP) in the case when f is such that the orbits are

compact. Finally, in section II, we give various remarks and extensions.

Remark: The results and proofs given below remain trivially valid if the operator -A is

replaced by a general self-adjoint operator A

A-- (ai x)WT + cx)
ij YXi i j

(with (aij) uniformly ellliptic); if f(t) is replaced by a nonlinearity of the form

f(x,t) and if the Dirichlet boundary condition is replaced by a general boundary condition

(insuring the maximum principle) as for example:

au
-+ b(x)u - o(x) on 30

where n is the unit outward normal, b ) 0, 0 is given.

Let us also mention that the results of section I remain true for a general second-

order elliptic operator (even if not self-adjoint).

I. Structure of the set of steady-state solutions

Let f 6 C1(R), we denote by S the set of solutions u G C2 OF) of (SP):

(SP) -Au - f(u) in 0, u 6 C2 (3), u - 0 on ?0i

If we denote by A (-A + c(x)) the first eigenvalue of the operator (-A + c) on the

space HI (9) (for any c 6 L"(0))l then we introduce S+ (resp. S_, reap. So):
0

S+ =.fu 6 S, A (-A - f'(u)) > 0)

S_ = (u G S, A1 (-A - f'(u)) < 0)

S0  {u Q S, X (-A - f'(u)) - 01

In the result which follows, the topology is the one of the space C (a) (u Q C(),

u - 0 on 3).

Theorem 1.1:

i) S+ consists of a at most countable number of isolated points,

-3-



ii) Every closed connected subset of S0  is a totally ordered C1  curve (for the

partial order: u 4 v , if u(x) 4 v(x) V x Q (),

iii) If C is a connected subset of S then T C S

* iv) For each uaS, if the set M+(u) = {u S, u> u, u )u} is not empty then it

has a minimum element m+(u) and m+(u) 6 S+ U S0 . Similarly, if

M_(u) u S, u uu u} Z V , then this set has a maximum element m_(u) and

m_(u) 6 S+ U So .

v) If C is a connected component of S_ such that there exists u 6 C with

M+(u) ( Cresp. M_(u) $ 0) then M+(v) ( @(resp. M+(v) $ 0) for all v 6 C and m+

(resp. m_) is constant on C.

Remark I.I: By a simple use of the strong maximum principle (and of Hopf maximum

principle) we have:

1) +(u) > u > m (u) in 0, a (u)l < a- < a(m W) on .
+ In 2 i + u n C - ) on

Before giving the proof of Theorem 1.1, we mention first an easy application of

Theorem 1.1 and state a result insuring that M + (u) or M_(u) are not empty.

Corollary 1.I: Let C be a closed connected subset of S then either C C S+, either

CC S- or CC So.

Proof: If C N S+ # 0 then because of i) we have obviously:

C = Cul Cs

On the other hand if C r _ $ 0, then by the preceding argument we have necessarily:

C lS -0. Thus:

C - (C ns_ ) u (C n S0 ), (C n s_) rn (C n s =

But in view of ii), C n S_ is closed since c ns C S . On the other hand, C and

S0 being closed, C n S0 is closed. Now, since C is connected this implies: C r) S

or C rlS0  is empty; and since we assumed C nS_ VI 0, we conclude: C SO  0 or

C C S.

Proposition I.I: Let u 6 S-.

i) Then M+(u) is not empty if and only if there exists w 6 C2 (ff) such that:

(2) -Aw ; f(w) in n, w ) u in IT, w p u

-4-
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(ii) Similarly K (u) is not empty if and only if there exists w 6 C2 (SY) such that

(3) -Aw 1* f (w) in n), w 4 u in ?F, w A u

The proof of Proposition 1.1 will be given below, together with the proof of iv).

Remark 1.2: If f(t) satisfies:

(4) Mm fltlt' < AXI A X (-A)

then M+(u) is not empty for all u G S-. Indeed let u be such that:
=M flt)t-1 < U <

t++OD

we have for some C > 0:I.

f(t) ( it + C , for all t ; 0.

Next, let w1  be the solution of

-Awx - UVX - XC in Q, w X a C2 ( , v- 0 on Do

with A J 1.

For A large, we have: V > u in 21 and since we have

-AV.X - IVw. + CA > OVA + C )f(wX) in

we conclude by a simple application of Proposition 1.1. Similarly, if f(t) satisfies:

(5) I-1 f(t)t
-
' < X - X1 (-A))

then 14(u) is not empty for all u 0 S_.

We now turn to the proof of Theorem 1.1:

Proof of i)t Since, by definition, for every u a s+ the linearized operator

(-A - f'(u)) is one to one, u is an isolated point in S. In addition, in view of the

equation (SP) and the Schauder estimates the set {u a , ulT ( R1 is compact for
C (IT)

every R < +-. These two facts prove i).

Proof of ii): We first prove that if C is a closed connected subset of S o  then C is

totally ordered. Of course, we may assume that C contains more than only one point; in

this case each point u of C is an accumulation point, that is:

V u Q C (u) G C, u u, u + u

Then we have

-5-J



-A(Un -U) = (fMu) - fu))(Un-U)- 1 (u n-U) in

u -u C C2 (17), u-u =0 on ai, U-U , 0

where (f(un) - f(u))(u n - u)-  c n(x) (= f'(u(x)) if Un(x) = u(x)). Thus 0 is some

eigenvalue of the operators (-A -c n and since cn converges (uniformly) to c(x)=
tn

fl(u(x)), we deduce:

A (-A - ) = 0 for n large enough

but this implies (u n-u) ) 0 in II Thus, we have shown that:

V u B C, SE > 0, V V B C |v-ul < X f(v)-f(u)

Next, we define the map from C x C into R:

(-A -f(v)-f(u)A(u,v) - X v-u

It is clear that A is continuous, therefore the set C = A-1{O is closed. But on the

other hand one can prove in the same way as above that if A(u,v) = 0 then: 3 > 0

V u, v g C lu-u[ + Iv-vI < e ==> A(u,v) =0 . (Indeed 0 is an eigenvalue of

(-A and as C goes to U, (f(;)_ f(ulv- converges to

(f(v)-f(u))(v-u)-1 since A(UwV) - 0, this implies A(uv) = 0 for C small enough.)

This shows that A-1{O} C is also open (for the relative topology on C x C) but since

C x C is connected and since A(uu) = A 1(-A - f'(u)) - 0 (CC SO) we deduce:

C x C, or in other words:

(-A - (f(u) - f(v))(u-v) " ) = 0, Vu, v B C

Since we have for all u, v Q C

SA(u-v) - ((f(u) - f(v))(u-v)-'}(u-v) in A

u-v B C2(X), u-v = 0 on ag

we proved that if u, v G C, u 0 v then necessarily we have

either: u > v in 0, a- < a on 3D

or: u < v in 9, au > a- on 3l

that is C is totally ordered.
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We now prove that C is a C1 curve: without loss of generality we may assume

that C contains more than one point. Then we introduce for all v 6 C:

t(v) - fa v(x)dx

This defines a continuous map from C into R: its range is some interval (t0 ,t1 ) (if

C has a maximum element, we take (to, t1I and if C has a minimum element, we take

[t0,t)). Since C is totally ordered, it is clear chat:

t(v) = t(v') =-> V = v'

Thus the map from C into I (v * t(v)) is continuous and one to one. In addition

since C is totally ordered, we have: t(v) > t(v') -> v > v' in A. We may now define

a parametrization of C: I a t w vt where vt is given by the solution of t(vt) =t.

It is very easy to check that vt  is continuous for t 9 I.

We now prove that the map (t l vt) is C1  on I and that VI (t) wt where wt

is the normalized first eigenfunction of:

(6-A " wt -f'(vt)wt in 9, wt 9 c2 X)

(6)
wt > 0 in 9, wt = 0 on g, fwt(x)dx - I

since the continuity of wt with respect to t is a standard consequence of the
continuity of f'l(vt), we will only prove that: 2!(V(t+h) - V(tl) - wt .

h h+

But we have:

h(v - vt)) = {Iflvt h ) - flvtlCvt+h - v) (vt+h -vt))

1.( v - v t , c 2
(11), -(v vt - 0 on aot (vt h - v > 0 in [

and

(8) fa .1(vt - )(x)dx = 1

h I
If we denote by: wt - (vt h - vt). In view of (7) and (8), we have:

lwhl 4 C, I-Awhl1  4 C (for some C ind. of h)t L 1(0) t L 1 (1)

From well-known regularity results, this implies:

OW h 1 C, for all 1 4 p < (< if N a 1,2)
t IY(Q) N-2

-7-
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but this implies, using (7): I-Aw hI C, for all 1 4 p < and by a
t ~() N-2

straightforward bootstrap argument and by Schauder estimates we obtain:

Iw h C (V 0 < a < 1)t C 2,a (a)

h

Thus taking if necessary a subsequence, wt h2.) w solution of (6),

Remark 1.3: It is easy to deduce from the above proof that the curve C has the same

regularity than f (if f 0 Ck , then C is of class Ck, for all 1 ( k )

Proof of iii): Let C be a connected subset of S_, we may assume without loss of

generality that C contains more than one point. Let (un) be a converging sequence in

C, u + u. It is clear that u G S U So . Suppose that u G SO and let us try to obtain
nn

a contradiction.

Each un  is an accumulation point in C, thus there exists un G C such that:
S mu.

u + U, u Is U.n m n n n

U - u {M"u) - flu m" - u ) 1(u - U in an n n n n n n n

U . u a C2( -), uM - u 0, us  u =0 on
I n n n n n n

Therefore 0 is some ei'qnvalue of the operator (-A - cm) where
n

cm . {(f(um) . f(u))um - un)-1}. Since cm converges, as m goes to infinity, to
n n n n n n

cn = f'(un); we deduce that 0 is an eigenvalue of (-A - f,(u )). Now, since u + u
nn n

and thus f'(u n ) + f'(u) and since A (-A - fl(u)) = 0, this would imply that for n
n n 1

large: A1 (-A - f'(u)) 0; and this contradicts the assumption: un G C CS_. The

contradiction proves iii).

Remark 1.4: We proved in fact that if un 6 S- and un is some accumulation point in

S, then all limit points of the sequence (un) n  lie in S-.

Proof of iv) and of Proposition 1.1: We will only prove the assertions concerning m+,

M+° we first remark that if H+(u) is not empty then any u in m+(u) satisfies (2).

Thus it remains to prove that if there exists w satisfying (2), then there exists a

minimum element in S above u. We will prove that this minimum element m+ (u) belongs

to S+ U so.

-8-
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To prove the existence of a minimum solution in S above u, we will adapt some

general results of H. Amann (11, (21. Since u Q S, there exists AI < 0 and

, V1  2 Off) such that:

-AV, . f'(u)vI + X v1 in a, v IS C2 (Of),

v1 > 0 in v, v =0 on afl

Thus for C small enough (0 < e ( £4):

-A(u+ev ) = f(u) + f'(u)cv + C )Vl in

4 f(u+Cv ) in 2

On the other hand, if w satisfies (2), from the strong maximum principle we deduce:

aw 3uw(x) > u(x) in 2, U< r on 3

Therefore for e small enough (0 < e 4 e ):
2

u + Cv < w in n. w -( ) on 301

Hence we obtained, for 0 < e o - min(e ,C2)

-A(u + ev I ) ( f(u + CvI ) in M, u + ev1 < w in 0

We will denote by K a positive constant such that:

f'(t) + Kt ) 0, for t a [-Eul , + lw

C( ~ C(O
And we introduce the standard iterative method: (0 < (e 0

C

u0 =U + CvI 1

-Au + Ku e f(uC) + Ku in a1n+1 n+1 n n
n+n1 =0 on 3

It is then obvious to show that:

u <u u < .< un  u <...< w in) 0 1 n n+1

uC + u QS in C2 (M)n n

C C6 C eland in addition: u n ( u n  V n > 1, V 0 < e ' eC c 0 and thus: u C u Hence, as

goes to 0, u converges in C (F) to u G S.

-9-



We now prove that for all 9 > 0 u
6 C S+ U Soo thus a S + U SO  and we will deduce

that ue-u for C small enough.

Indeed we haver

- u +K(u -U u f(u ) + Ku - f(uC) - Ku n
n+1 n+1 n n

flu) + Ku
- flue 1 ) -Ku 1

£ -1

((f(uc) - f(u u))(u - u ) + XI(uC - U+ ) in a
n+1 n+1 n+1

and u- UnC > 0 in M, u -u C C2 (0a), -u n+I - 0 on
n+1 ~ n+1 +

This implies: A (-A - )o 01 n+1 0,
C C C )-1}

where 1  ( (fmu) - f(u ))(u -U }
nf1l+1 Un+1)

Next, as n goes to , c C f'(u ) and thus u 6 S L S Hence u a S U S
n+1 n + 0 + 0f

Uu Zu u in 3F.

But the maximum principle shows that:
3u au

u(x) < u(x) in 0, In >  on 30

and therefore we have for e small enough: u + ev1 4 u in 0, this yields: u (u
n

u C and u u for e small enough.

Now for any u B S such that u u, u u; we obtain from the strong and Hopf

maximum principle:

u > u in 9, 1n < n on 30

and therefore for 9 small enought u + ev 4 ; in 0. This implies: u C u, vn and
1 n

since ue + Z we deduce u C u. This shows that u is the minimum element of S above
n n

u. We will denote it by m (u); and we already showed that m+ (u) Q S + U so.

Remark 1.5: Other arguments for the existence of m +(u) can be given but we prefer the

above one since it yields a constructive existence proof.

Proof of v): Again we will only prove the assertions concerning ma, H++. Let C be a

connected component of S and suppose there exists u0  with K+(u0) 0 P. Let C' be

the connected component of the set G 9 S., K +() 0 0) containing uO . We first show

that C' is open (for the relative topology): indeed if u 6 C', m+(u) satisfies:

-10-



m(u) > u in S )) on
- - y-~ (m+Cu))o

Therefore for v Q S, v near u; we still have: v < m+(u) in I/, thus m +(v) p p and

this shows that C' is open.

We next show that m+ is continuous on C': let u G C', u 4 u and u G CO; letn n n

* us prove that mCu) ( + M Cu). We first remark that for n large enough, as we proved
e n n +

above, we have: u < m+(u) in 'f. Thus: u C m+(u ) - m+(u) in If, for n large
ao+ n n + un

enough. This proves in particular that +(Un) is bounded in L7(0), and using the

equation (SP) and regularity estimates we deduce that m+(un) is bounded in C 2,a(1)

(V 0 < a < 1). Now (taking if necessary a subsequence) m+(un) converges in C2 (U) to

u S U S and u 4 u m (u).
+ 0 +.

Since u - S+ U So, u V u and thus from the definition of m+(u) this shows that

u = + u). This proves the continuity of m+ on C'.

We now prove that m+ is constant on C' and thus

a+(u)= m (u0 ), v u e C'

Indeed, m+(C') is a connected set C S U So. But because of iJ, if m (C') A S+ 17

then m+(C') + (u0)} C S+. And if m {C') () S+ , we then have m (C') C s 0 ; and

from ii), we deduce that m+(C') is totally ordered. This will enable us to show that

M+ is locally constant and this concludes the proof since m is continuous and C' is

connected. Let v B C'; if m+ is not constant in a relative neighborhood of v, then

there exists vn Q C', v v and m (v ) m+(v). Since m+(vn ) and m (v) can be

compared we have:

either m+(v n ) < m+(v) in Ci
+ n +.I

or m (v ) > mv) in .

If the first case happens for n large eno, gh, recalling that (vn) + m (v), we should
+ n n +

have: v < m+(v n ) in 01. And this contradicts the definition of m+(v).

Now, if the second case happens for n large enough, recalling that v + v < m(v)
3 v a

in n (and > -n (m v) on 30); this would imply: vn < m (v) < n (vn) in 2. And

this contradicts the definition of m +(vn). Thus m is locally constant in C' and this

shows that m+ is constant on C': m+(u) - m(Cu0 ), V u a C'.

-11
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We may nov conclude by proving that C' is closed (for the relative topology) and

since C is connected, this viii show that C - C'. Therefore let un G C', u + u 6 C.nn n

We have just proved

un 4 m+(un  m +(u O ) n + + U S

Thus: u 4 a+(u O) e S U S o# and u I a+(uo). This shows that mW(u) i O and that
+0 +0

u B C'.

Remark 1.6: We would like to point out that because of the local compactness of S,

Theorem 1.1 is still valid (with the same proof) for the topology of any space like

W) () C ) - where we denote by X0  the subspace of any functional space X

of functions vanishing on al-.

Remark 1.71 As it was mentioned in the Introduction, Theorem 1.1 and its proof are still

valid for any uniformly elliptic second-order operaotr instead of -A, for general

nonlinearities f(xt) instead of f(x) and for general boundary conditions (satisfying

the maximum principle).

1I. Asymptotic behaviour for quAsi-bounded nonlinearities.

We consider now the (IVP)

au - Au - f(u) in a x (0,1), u e c2(Q) n CO)

u(x,t) - 0 on 32 x (0,+), u(xO) Uo(X) in 

where Q . A x (0,+), u 0  is some given initial condition in the space X W low (2) (for

0 0
example).

We will assume that f( C1 ()) satisfies:

(9) Ti'- fmtl
" 

< X, - (-A).It-1

This insures for example that, for any u0  in X, there exists a unique solution

u(x,t) of (XVP) and that:

Iu(xt) 4 C (indep. of t 0)

C(M)

-12-



This implies that u(*,t) is bounded in C2 ' (O) (for t ; 6 > 0) for all 0 < < .

in particular the orbit (u(o,t))t08 is compact in X (for all 5 > 0).

Of course u(x,t) defines a (nonlinear) semigroup u(-,t) = S(t)u0 . Finally, since

the orbit is compact in X, by well-known results (see for example C. M. Dafermos [71) we

have, denoting by w(u 0 ) the w-limit set of (S(t)u0)t00  i.e.,

(u - (u a x, 3t -u(.,t + u!

(10) W(u 0 ) is a connected compact subset of X

in addition, since we have a Lyapunov function namely:

(11) SIv) - J 1 )DvJ 2 
- F(v)dx

where F(t) - f(s)ds, we have:

(12) S(uo) C s; au 0 in Cl'a (N) (o < 1)

wiow applying Corollary I.t, we see that only three possibilities ay happen.

i) W(uO ) C or ii) O(u) C S0 or iii) w(u ) C S_. It is then natural to introduce the

three sets (which are disjoint):

I+ . (u0 a X. w(uO  C S+)

I- - uo a x, 0(u0 ) C s_)

10 = (u 0  X, W(u0 ) C s o ] )

we just explained why we have: X-I U1T U I+.

We will denote by B(uoc) - {u Q X, lu-u I a). Our main result concerning the

asymptotic behaviour of (IVi) is the following:

Theorem 11.1: Uinder assHuption (9) and if f B C
2

(R) we have:

i) I+ U 10 contains an open dense setl

ii) For all u0  in I+ U Io, (u o) is a singletong

iii) if u 0 a I-, there exists C > 0 such thats

(13) v v 9 B(u,C), v ; Ut v u 0 .N> (v) = (u
+
) C S +U So

where u +  
M +(v), V V 6 b)(u )

(14) V v a B(u 0 VC), v 4 v u 0 =M> o(v) (u') C S+ U S0

where u- = -(w), V w a w(u )

In particular if v 9 B(U 0 ,E, v ) u 0 on v 4 u 0 , v A u 0 then v a I+ r 0 .

-13-



Remark II.1: Remark first that in view of Remark 1.2 and assumption (9), m
+ 

and a- are

defined on S- and are constant on each connected component of S_ and thus m+, a_ are

constant on W u 0 ) since Wu 0 ) is connected (for u B I_).

Remark 11.2: The fact that w~u ) is a singleton, for u 0 in Io can be deduced from
00

the fact that by part ii) of Theorem 1.1 (u ) is a Cl -curve and from general results on0

dynamical systems of J. Hale and P. Massalt 110]. However we give a different proof which

is a trivial consequence of the fact that 0(u ) is totally ordered.

Remark 11.3: The above result shows in particular that, generically in X,

S(t)uO + u a S+ U S (that is a solution of (SP) such that: A (-A - f'(u)) > 0).

Remark Z.4: The above result is still valid if we replace N 0C(2) by C0(IT) or

or the subspace 3 of CO (1) defined by: 2 - U A[-8,+81 where 6(x) a dist(x,30) and

where [uv] - (w a C,(F), u ( w C v}, E is equipped with the order unit norms

lul - infCA > 0 / -X8 • u C A6) (z with this norm is a Banach space - for more details,

see H. Amann 121).

Remark 11.5: Similar results hold for general self adjoint uniformly elliptic second-order

operators, for general nonlinearities of the form f(xt) and for general boundary

conditions preserving the maximum principle.

Before giving the proof of Theorem 11.1, we mention the following standard comparison

principles let u0 < v0 , u 0 Y v0  then for all t > 0 we have:

S(t)uoCX) < S(t)v (x) in 0, . (s(t)u0) > .n (S(t)v0 ) on a .
0 0 W

Proof of ii): Because of (10) and of part i) of Theorem 1.1, then it is trivial that

(u0 ) is a singleton if u 0 B I+. Next, let u0 B I, W(u 0 ) is a compact connected

set C SO, thus m(u ) is totally ordered. If W(u ) is not a singleton, there exist

Ulf u20 u3 in W(u 0 ) such that: uI < u2 < u3  in 0, F- (UI) > u 2 ) > (u3 ) on

MO. Since u 1 B W(u), there exists (tn)n such that u(x,tn ) n u l (X ) in C

Therefore for n large enough, we haves u(x,tn) n u 2x) in Ir. And this gives:

uxt) • S(t-tn )u 2(X) - u 2x), for t ) t .  And this contradicts the fact that

3 a W(u 0).

Proof of iii): We will only prove the part concerning (13). Let u 0 a I0, we recall a

-14-



few results proved in P. L. Lions (131: for t large enough we have:

(15) 3I > 0, A (-A - f'(u(.,t))) 4 -G < 0

(this is true for "t - " since W(U 0) C S_, and by continuity this remains true for

t large).

Let v1 (xt) be a normalized eigenfunction of

f -AVI, f'(u(x,t))v I + A1 (t)v I in ,

V 1 C2  X), V I > 0 in , v1  = 0 on a3, Iv11 L
2( - 1

(and thus by (15), Ct) X -W ' 0).

I 11 itiprvdtaa (AW
In (131, it. isproved that: I ,A,(t,, 0. (vl(x,t)) t- 0 in C (T,. Then

we have for C > 0:

a (u+cv -(u+cv 1 ) f f(u) + f'(u)ev1 + A Ev1 + C (.tv 1

and for C small enough, we deduce:

- (u+Cv 1 ) - A(u+Cv 1 ) 4 f(u+cv1 ) C 2 Vy + C v i

Since for t large enough: (v 1) C .jv1  in ; we obtain finally:

(1 60 > 0, IT0 > 0 such that for c 6 ]Oco], for t ) To we have:
(16) a

- (u+Cv1 ) - A(u+CV1 ) 4 f(u+cv1 ) in .

Remark that we also have:

(17) 3C 1 Y ) 0 such that: Y6(x) 4 v (xt) 4 C8(x) in W

(recall that S(x) = dist(x,ag)).

Next, let u+ = m+(w) (V w a W(u0 ), we already showed that m+ is constant on

W(u ) - see Remark 11.1 above). A simple continuity argument shows that there exists

T > O, v > 0 such that:

u(x,T) + V8(x) 4 u+(x) in U

Next let £ be such that, for v 6 B(U ,C), S(T)v 4 u+ in U (use the continuity of the

map S(T) from X into C (O)).

i -15-



4>- M J .
-  

ki - - " . -

we now take v 6 (u ,U. v ) U 0 , v p 0 and we are going to prove that

(t) v u F'rom the choice of c above we surely '- w 4 u +
, W Q S V W 6 W(V)o

too

From the definition ot u , it just remains to prey if w W w(v) then there exists

u (uO ) such that: w V u w . u. And this will ze achieved with the help of (16)

(17). Indeed, we haves

S(T )v (x) ) in 9, (S(o)v) < (S(To)uo) on

and thus there exists C small enough such that:

S(To)v A S(To)u0 * tvI (x,T 0 ) in

Next because of (16), this yields:

S(t)v(x) ) u(xt) + Cv (xt) in I, for t b T a

or in view of (17)s

8(t)v(x) ) u(s,t) + €Y6(x) in I. for t A T 0

Now it is easy to conclude, since if 8(t )v# v 6 w(v), there exists a subsequence tn ,

such that u(.,tn,) *,u 0 N(u ) and we haves
n n 0

V + 4 i

thus w p u and since we already know w ( u
+ 
- u+(u). we conclude from the definition

of a+ V a: m(u) - U.

Proof of ±)s First, let us remark that it is well-known that I+ is an open set (see for

example D. Henry (111). To prove i). we are going to exhibit, for each u0  in X, an

open set 0 such that:

i 0  C :, i1 ) u 0 a% 0.

u 0  +. Next, if u 0  I_, we have just seen that

there exists € > 0 such that:

V V a X, U0 4 v 4 u0 + Ca =-> w(v) a (u+)(- (m+(v)), V w Q W(u0 ))

We then define:

Ouo {v a X, 30 < l n I 2 
< 

C, u0 
+ n16 4 V 4 u0 + 12

6 
in

Obviously u0 6 B0 and for all v in Ou : h(v) - u C S+ 0  and thus

V 6 1+ U 10. Finally if u0 6I O , two cases are possible;

-lb-



I s t case: v +u, v U., v 61 _ In this case we define:
nn n n -

0 U 0 (0 v has been defined above)
0 n n n

Thus 0 C + UI 0 and u0  -lim v 6
n  

0 Uo

n

2nd case: O > 0, V v 6 B(uo*Co), v ) U0 , v u0  > v I+ U 10 .

We then define

o (v G X/ao < n < 12 < Coo + n I v u0 + q2l in 'fl
U0

and we conclude.

Remark 11.6: i) Let S+ -uj, 1 4 j < N) (N I 4-), we may define:

Ij 0  X/W(u0 ) - (u }}. Then it is quite obvious to show that I+  are the connected+ 0 0 j

components of I+ (and thus are open)

ii) Let S - U C (K 4") where Cj are the connected components of S_, we may

define:

I' = {uo a X/Wu o ) CC j}

It is also easy to show that ij are the connected components of I and that for all

u6 Ii, there exists C > 0 such that:
0

V v 0 B(uof), v o uo v I u0 .. > v) - (U

V v a B(u 0 1 c), V -C u0 , v Au -> "Mv (y{u
0I

where u is the minimum solution of (SP) above any element of C and u is the
+ -

maximum solution of (SP) below any element of C1  (and u1 , u a S+ U So).

III. Variants and extensions:

111.1. Unbounded nonlinearities:

If we no more assume (9), the solution may not exist for all time. One way to get rid

of this difficulty is to restrict our attention to an invariant domain K such that for

any u0 6 K, the solution of (IVP) exists for all t ) 0 and remains bounded as t a -.

Then Theorem 11.1 remains valid for u0  in K (and for the relative topoloqy of K in

X).

-17-



Let us give two natural examples:

(i) K = (u0 X/u(.,t) exists for all t 0 0, Iu(.,t)I 4 C - C(U ) V t ) 0,
c(Q)

(remark that K if and only if S C(G)

(ii) K - (u0 a X/u < u0  in 

where u, u are sub and supersolutions of (SP) that is satisfying:

-Au( f(u) in 0, -bu f(i) in 9

u, a C2 (IT), uf Y in T, u (0 - on aA

In these two cases we define:

1+- (u0 0 K/a(uO ) C S+)

I - u0 a X/u(u O ) C S)

I- (uo a /W(uo ) C S}

We then have:

Theorem 111.1: Let f C((R) and let K be defined by (i) or (ii), we have:

i) There exists an open set 0 such that 0 C + U lo t 0 r K - K;

ii) For all uo n 1+ U lO , W 0(u0 ) is a singleton;

iii) if u 0 Q i_, there exists c > 0 such that:

(13') V v a B(Uo,) n K, v ) u O, v u 0 - (v) - (u +
} C S +U SO

where u+ - m+(w), V w a W(Uo0

(14') v v a B(uo,C) n K, v < u O, v u u 0 m.> W(V) - (U' C SU 8

where u- - m'(w), V w 6 W(u 0)

In particular if v a 2(uoe) n K, v )u 0 or v u0 , v I u0  then v 9 1+ U 1O .

Remark 111.1: The proof %f this result is totally identical to the one of Theorem II.1.

We just need to remark that if K is given by (i) and if there exist .u 0 a I-, v a K such

that v - Uo, v j u0  then M+(w) is not empty on the connected component of S_

containing 0) .
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Remark 111.2: In some sense, the above result contains the results of P. L. Lions (131

(except some geometrical descriptions heavily dependent on the convexity of the

nonlinearity f assumed in (131).

Remark 111.3: Most of the remarks made in the preceding section are still valid here (with

some obvious adaptations).

111.2 Iterative schemes:

To simplify, we will consider the case of a nonlinearity satisfying (9) and we will

assume in addition that we have:

(19) - K 0, f(t) + K0 t is nondecreasing for t ; 0

We consider the asymptotic behaviour of iterative schemes like: u0 6 X and (un n I

is defined by

(20) -Au + Ku - f(un-1 ) + Ku n_ in , un G C2 (T), u - 0 on
n n n-n-

From (9), it is easy to deduce that un is bounded in L(Q) and thus in

c2 ,0 "da) (0 < a < 1).

Now, if K ) K0  we have, wultiplying (20) by un - un-1  and integrating by parts

over Qz

1If1u 12 + Ku2dx Du ." u + Ku u dX "

n nn n-i n nl-1

flflun_ 1 + Kun-lllUn - Un- 1

and because of (19), this is less than:

+ u dx +, K 2 1 dx
4 I F(un) 2. n -O JF(un1) 24 nu d

(recall that F(t) - ft f(s)ds). On the other hand, since we have:12 + 2 + /n 12 + KI
fQD DU KUndx 'u0~uI Kud. + -1faDU.. K 1 d,

IaDn " n-1 + Xunun-1 f " n Dul2 n2 -1 n-1a

-jfgIlD(u - un)1
2 

+ K(un - u 1 )
2 x ,

we finally obtain, if K • K0 ,

-19-



2n j Inu1 2  F(un)dX " f -2 IDuf_ - F(un.1)dX
1 )12 + (n. )2d

4- - i faD(UnU.)1 + K(u. - n dX2a nou - un-1 gn-1

and this enables us to show that: u - U + 0 in C
2 '(0)(O < a < 1). Therefore, if we

n n-1in

denote by 0(u 0 ) the set of limit points of the sequence (U)n) 1i, we have:

(21) w(u ) is a compact, connected set, contained in S
0

Therefore we may define again:

I+ a (u 0 /u O ) C s+}, I- - (u0 /w(u0 ) Cs_), 10- (u0 /wlu O ) C so )

Of course 1+, I_, 10 are disjoint and I+ U I_ U 10 a X.

Then, we have:

Theorem 111.2: Under assumptions (9), (19) and if K Ko o then we have:

i) I+ U I0 contains an open dense met.

ii) For all u0  in I+ U lo, 0(u 0 ) is a singleton,

iii) If u0 a I_, there exists c > 0 such that*

(13) V V B v u 0 ,  1 u0 > N(y) - {u + ) C 8, U so

where u - R+(v), V w a(Uo0

(14) V v S(o,G), v u O, v P u 0 , ,N > W(v) - {u) C 8 + U S o

where u- - m'(w), V w 1 w(uo).

In particular if v a B(U o,), v u 0 or v (Uo, v u then vw I+U 0.

The proof of this result is identical to the one of Theorem II. I and we will skip

it. In addition, all remarks made in the preceding sections are still valid with om

obvious modifications.
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